Deformation of scalar curvature and volume
نویسندگان
چکیده
منابع مشابه
Existence of Metrics with Prescribed Scalar Curvature on the Volume Element Preserving Deformation
In this paper,we obtain two results on closed Reimainnian manifold M × [0, T ].When T is small enough,to any prescribed scalar curvature, the existence and uniqueness of metrics are obtained on the volume element preserving deformation.When T is large and the given scalar curvature is small enough,the same result holds.
متن کاملConformal Deformation of a Riemannian Metric to Constant Scalar Curvature
A well-known open question in differential geometry is the question of whether a given compact Riemannian manifold is necessarily conformally equivalent to one of constant scalar curvature. This problem is known as the Yamabe problem because it was formulated by Yamabe [8] in 1960, While Yamabe's paper claimed to solve the problem in the affirmative, it was found by N. Trudinger [6] in 1968 tha...
متن کاملThe Scalar Curvature Deformation Equation on Locally Conformally Flat Manifolds
Abstract. We study the equation ∆gu− n−2 4(n−1)R(g)u+Ku p = 0 (1+ ζ ≤ p ≤ n+2 n−2 ) on locally conformally flat compact manifolds (M, g). We prove the following: (i) When the scalar curvature R(g) > 0 and the dimension n ≥ 4, under suitable conditions on K, all positive solutions u have uniform upper and lower bounds; (ii) When the scalar curvature R(g) ≡ 0 and n ≥ 5, under suitable conditions ...
متن کاملSome Compactness Results Related to Scalar Curvature Deformation
Motivated by the prescribing scalar curvature problem, we study the equation ∆gu+Ku p = 0 (1 + ζ ≤ p ≤ n+2 n−2 ) on locally conformally flat manifolds (M, g) with R(g) = 0. We prove that when K satisfies certain conditions and the dimension of M is 3 or 4, any solution u of this equation with bounded energy has uniform upper and lower bounds. Similar techniques can also be applied to prove that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Annalen
سال: 2013
ISSN: 0025-5831,1432-1807
DOI: 10.1007/s00208-013-0903-8